报告人简介:
任新国,中科院物理所特聘研究员。2006年于德国奥格斯堡大学获得博士学位。先后在在柏林弗里兹-哈伯研究所(2006-2012,博士后)和中国科学技术大学量子信息实验室(2013-2019,特任研究员)工作;2019年11月加入物理所。长期从事第一性原理电子结构方法的发展和程序开发。研究领域包括:(1)密度泛函理论,特别是基于无规相近似的先进交换关联泛函方法;(2)格林函数理论,特别是基于GW近似的激发态计算方法;3)大型第一性原理计算软件的开发。目前已发表论文100余篇,被引用9000余次。
讲座摘要:
Electronic structure theory is the base for first principles calculations of molecules, materials. Developing novel concepts, efficient algorithms, and computer codes is the key for tackling complex materials of physical interest with predictive accuracy. Compared to plane wave basis, numerical atomic orbitals (NAO) basis sets facilitate low-scaling implementations of electronic structure methods, permitting calculations of systems of unprecedented size and/or with reduced computational cost. In this talk, I will discuss some of our recent efforts on the methodology, algorithm, and computer code developments based on NAO basis sets. Such efforts have led to a range of recent NAO-based technical advances and implementations of hybrid density functionals, random-phase approximation , GW and beyond, density functional theory and dynamical mean-field theory (DFT+DMFT).
邀请人:刘健鹏
任新国,中科院物理所特聘研究员。2006年于德国奥格斯堡大学获得博士学位。先后在在柏林弗里兹-哈伯研究所(2006-2012,博士后)和中国科学技术大学量子信息实验室(2013-2019,特任研究员)工作;2019年11月加入物理所。长期从事第一性原理电子结构方法的发展和程序开发。研究领域包括:(1)密度泛函理论,特别是基于无规相近似的先进交换关联泛函方法;(2)格林函数理论,特别是基于GW近似的激发态计算方法;3)大型第一性原理计算软件的开发。目前已发表论文100余篇,被引用9000余次。
讲座摘要:
Electronic structure theory is the base for first principles calculations of molecules, materials. Developing novel concepts, efficient algorithms, and computer codes is the key for tackling complex materials of physical interest with predictive accuracy. Compared to plane wave basis, numerical atomic orbitals (NAO) basis sets facilitate low-scaling implementations of electronic structure methods, permitting calculations of systems of unprecedented size and/or with reduced computational cost. In this talk, I will discuss some of our recent efforts on the methodology, algorithm, and computer code developments based on NAO basis sets. Such efforts have led to a range of recent NAO-based technical advances and implementations of hybrid density functionals, random-phase approximation , GW and beyond, density functional theory and dynamical mean-field theory (DFT+DMFT).
邀请人:刘健鹏